Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Omega ; 8(13): 12532-12537, 2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2285536

ABSTRACT

Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 µM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.

2.
Clin Transl Sci ; 15(7): 1599-1605, 2022 07.
Article in English | MEDLINE | ID: covidwho-1819886

ABSTRACT

The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and subsequently, coronavirus disease 2019 (COVID-19), has led to the deaths of over 6.1 million people and sparked a greater interest in virology to expedite the development process for antivirals. The US Food and Drug Administration (FDA) granted emergency use authorization for three antivirals: remdesivir, molnupiravir, and nirmatrelvir. Remdesivir and molnupiravir are nucleoside analogs that undergo biotransformation to form active metabolites that incorporate into new viral RNA to stall replication. Unlike remdesivir or molnupiravir, nirmatrelvir is a protease inhibitor that covalently binds to the SARS-CoV-2 3C-like protease to interrupt the viral replication cycle. A recent study identified that remdesivir and the active metabolite of molnupiravir, EIDD-1931, are substrates of equilibrative nucleoside transporters 1 and 2 (ENT1 and 2). Despite the ubiquitous expression of the ENTs, the preclinical efficacy of remdesivir and molnupiravir is not reflected in wide-scale SARS-CoV-2 clinical trials. Interestingly, downregulation of ENT1 and ENT2 expression has been shown in lung epithelial and endothelial cells in response to hypoxia and acute lung injury, although it has not been directly studied in patients with COVID-19. It is possible that the poor efficacy of remdesivir and molnupiravir in these patients may be partially attributed to the repression of ENTs in the lungs, but further studies are warranted. This study investigated the interaction between nirmatrelvir and the ENTs and found that it was a poor inhibitor of ENT-mediated [3 H]uridine uptake at 300 µM. Unlike for remdesivir or EIDD-1931, ENT activity is unlikely to be a factor for nirmatrelvir disposition in humans; however, whether this contributes to the similar in vitro and clinical efficacy will require further mechanistic studies.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Endothelial Cells , Humans , Lactams , Leucine , Nitriles , Proline , SARS-CoV-2 , United States/epidemiology
4.
J Pharmacol Exp Ther ; 379(1): 96-107, 2021 10.
Article in English | MEDLINE | ID: covidwho-1483965

ABSTRACT

In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.


Subject(s)
Antiviral Agents/pharmacology , Organic Cation Transport Proteins/metabolism , SARS-CoV-2/drug effects , Animals , Benzalkonium Compounds/pharmacology , CHO Cells , Cetylpyridinium/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Cricetinae , Cricetulus , Naphthyridines/pharmacology , Organic Cation Transport Proteins/drug effects , Quinacrine/pharmacology , Tilorone/pharmacology
5.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Article in English | MEDLINE | ID: covidwho-1403004

ABSTRACT

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Cytidine/analogs & derivatives , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , SARS-CoV-2/metabolism , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/metabolism , Alanine/administration & dosage , Alanine/metabolism , Antiviral Agents/administration & dosage , COVID-19/metabolism , Cytidine/administration & dosage , Cytidine/metabolism , Dose-Response Relationship, Drug , Drug Interactions/physiology , HeLa Cells , Humans , Protein Binding/drug effects , Protein Binding/physiology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL